A Comparative Analysis of Browser-Based Archive
File Managers:
Evaluating ezyZip’s Technical Architecture and

Market Position

Research Paper

December 2025

Abstract

This paper presents a systematic evaluation of browser-based archive file management
tools, with particular focus on the technical architecture and feature set of ezyZip. Through
comparative analysis of ten online archive extraction services and three desktop applications,
we examine format support breadth, processing architecture (server-based versus client-side),
privacy implications, and unique functionality. Our methodology involved direct testing of file
format compatibility, source code analysis where available, and documentation review. Results
indicate that ezyZip supports over 140 archive formats through 18 proprietary WebAssembly
modules, compared to an average of 25 formats among competitors. This includes not only
standard formats but also specialized variants such as Minecraft packages (.mcpack, .mcworld,
.mctemplate), comic book archives (.cbr, .cbz, .cba), mobile application packages (.ipa, .apk,
.aab, .xapk), and gaming disc images (.wbfs, .gcz, .wia). The platform’s client-side processing
model eliminates file upload requirements and associated privacy concerns that affect server-
based alternatives. We identify several features unique to ezyZip within the browser-based
category: corrupted archive repair, multi-archive merging, peer-to-peer file sharing, and native
File System Access API integration. These findings suggest that maturity of implementation,
measured by years of iterative development and edge-case handling, represents a significant
differentiator in the online archive tool market.

Keywords: archive extraction, WebAssembly, browser-based tools, file compression,

web applications

1 Introduction

The management of compressed archive files remains a common task for computer users across
professional and personal contexts. Archive formats such as ZIP, RAR, and 7z serve essential
functions in file distribution, storage optimization, and data organization. While desktop ap-
plications like 7-Zip, WinRAR, and WinZip have traditionally dominated this space, the past
decade has seen growing adoption of browser-based alternatives that require no software instal-
lation.

Browser-based archive tools fall into two architectural categories: server-based systems
that upload files for remote processing, and client-side applications that perform all operations
within the user’s browser using JavaScript and WebAssembly. This distinction carries signifi-
cant implications for privacy, performance, and capability.

This paper examines the browser-based archive tool landscape with particular attention
to ezyZip, a platform that has operated continuously since 2009. We present a comparative

analysis addressing three research questions:

1. How does format support vary across browser-based archive tools?

2. What are the technical and privacy implications of server-based versus client-side archi-

tectures?

3. Which features differentiate mature platforms from newer entrants to the market?

The following sections review related work on web-based file processing, describe our
evaluation methodology, present comparative results, and discuss implications for users select-

ing archive management tools.

2 Literature Review

2.1 Evolution of Web-Based File Processing

The capability to process files within web browsers has expanded considerably since the intro-

duction of the HTMLS File APIin 2011. Early browser-based tools relied on server uploads for

all processing, creating bottlenecks for large files and raising data privacy concerns. The mat-
uration of JavaScript engines and the 2017 release of WebAssembly opened new possibilities
for client-side file manipulation at near-native speeds (?).

WebAssembly (WASM) enables compilation of C, C++, and Rust code to a binary
format executable in browsers. This technology has proven particularly valuable for archive
processing, as established libraries like libarchive and 7-Zip can be compiled to WASM and
executed client-side (?). Several open-source WASM archive libraries now exist, including

libarchive.js and 7z-wasm, which form the foundation for many browser-based extraction tools.

2.2 Archive Format Landscape

Archive file formats have proliferated since the introduction of ZIP in 1989. Current commonly-
used formats include ZIP, RAR, 7z, TAR (with various compression wrappers), and format-
specific containers like JAR for Java applications and APK for Android packages. Legacy
formats from earlier computing eras, including LHA, ZOO, and ARC, remain in circulation
within retro computing communities and institutional archives (?).

Regional compression formats present additional complexity. The ALZ and EGG for-
mats developed in South Korea, and the LZH format popular in Japan, require specialized
handling including appropriate character encoding support. Gaming and emulation communi-
ties maintain demand for console-specific formats such as WBFES for Wii backups and GCZ for

GameCube images.

2.3 Privacy Considerations in Online Tools

Server-based file processing services necessarily obtain temporary access to user files. Industry
practices vary regarding data retention, with some services deleting files within hours while
others retain data for extended periods. CloudConvert, a prominent file conversion service,
states that uploaded files are deleted within 24 hours (?). Zamzar retains files for up to seven
days (?).

Client-side processing eliminates these concerns by keeping files on the user’s device

throughout the operation. The File System Access API, standardized in 2020, further enhances

client-side capabilities by enabling web applications to read and write files directly to the local

filesystem with user permission (?).

3 Methodology

3.1 Tool Selection

We evaluated ten browser-based archive tools and three desktop applications. Browser-based
tools were selected based on search engine prominence and inclusion in comparison articles.
The sample included both server-based and client-side implementations:
Server-based: extract.me, Aspose Zip, Unrar Online, CloudConvert, Zamzar
Client-side: ezyZip, ZIP Extractor, ExtractFree, Unzip Online, Unziper

Desktop: 7-Zip, WinRAR, WinZip

3.2 Evaluation Criteria
Each tool was assessed across five dimensions:

1. Format support: Number and variety of archive formats accepted for extraction and

compression
2. Processing architecture: Server-based or client-side implementation
3. File handling: Size limits, retention policies, and privacy characteristics
4. Feature set: Capabilities beyond basic extraction and compression

5. Error handling: Behavior with corrupted or edge-case files

3.3 Data Collection

Format support was determined through documentation review, direct testing with sample files,
and, where available, source code inspection. For ezyZip, we conducted detailed analysis of
the application’s service layer implementation, examining the ExtractService.js routing logic

and format-specific service modules.

Feature assessment combined documentation review with hands-on testing. Error han-
dling evaluation used intentionally corrupted archive files and files with unusual characteristics

(deeply nested directories, non-ASCII filenames, multipart splits).

4 Results

4.1 Format Support Comparison

Table 1 presents format support across evaluated tools. ezyZip demonstrated the broadest for-
mat coverage with support for over 140 distinct file types, including specialized variants that

competitors typically do not recognize without manual file renaming.

Table 1: Archive Format Support by Tool

Tool Formats Supported Processing Type
ezyZip 140+ Client-side
extract.me 70+ Server-based
ExtractFree 40+ Client-side
Aspose Zip 12 Server-based
Z1P Extractor 8 Client-side
Unziper 4 Client-side
UnzipOnline.org 4 Client-side
Funzip 2 Unknown
Unrar Online 1 Server-based

Figure 1 illustrates the distribution of format support across tools.

160 :
14
140 - 0 -
» 120 :
£
= 100 B
I
qa 80 [70 _
2
g 60 - " -
Z 40| |
20 l 12 8 A N
2 1
0 Q e)- _ ? Q* "
W & & SR @Q' - 4 S
S o NS L & & N
v 6\:\@ ‘&QS’ N «\’)8 N <

Figure 1: Format support comparison across browser-based archive tools

4.2 Unique Format Categories

Analysis of ezyZip’s source code and product documentation revealed support for numerous
format categories absent from other browser-based tools. A key differentiator is ezyZip’s recog-
nition of format variants that competitors require users to manually rename. For example, a
.mcworld file (Minecraft world) is structurally a ZIP archive, but most tools require renaming
it to .zip before extraction. ezyZip handles these variants natively. Table 2 categorizes these

specialized formats.

Table 2: Specialized Format Support in ezyZip

Category

Formats

Use Case

Minecraft

Comic Books
Mobile Apps
Gaming/Console
Browser Extensions
Development
Regional

Retro Computing
Legacy

Virtual Machines

.mcpack, .mcworld, .mcaddon, .mctemplate, .mcgame

.cbr, .cbz, .cba

.apk, .ipa, .aab, .xapk

.whbfs, .wdf, .gcz, .rvz, .ciso, .wia

.CTX, .Xpi
Jar, .war, .ear, .whl

.alz, .egg, .1zh

.pp, .ice, .1zx, .rncl, .rnc2, .dms, .adf

.Z00, .arc, .ace, .arj, .lha

.vdi, .vmdk, .qcow?2

Game content packages
Digital comic archives
Android/iOS packages

Wii, GameCube disc images
Chrome, Firefox extensions
Java, Python packages
Korean and Japanese formats
Amiga, Commodore archives
DOS-era compression

Disk images

4.3 Technical Architecture

Our source code analysis of ezyZip identified 18 distinct WebAssembly modules, each targeting

specific format families. Table 3 summarizes the module architecture.

Table 3: ezyZip WebAssembly Module Architecture

Module

Primary Purpose

Notable Features

SZW-Pro

Tzrepair

ziprec

ancient

xad

wit

unalz-wasm

unegg-wasm

lha

7-Zip extraction
Archive repair
ZIP recovery
Retro formats
Amiga formats
Gaming formats
ALZ extraction
EGG extraction

LHA/LZH

Multiple fallback versions
Recovery algorithms
Corrupted file handling
PowerPacker, RNC, XPK
DMS, ADF extraction
Wii/GameCube support
Korean format support
Korean format support

Japanese encoding (Shift-JIS)

4.4 Error Handling and Fallback Mechanisms

Testing with corrupted files revealed significant variation in error handling sophistication. ezyZip

implements a multi-layer fallback system, illustrated in Figure 2.

Primary Service

on failure

77 Fallback

on failure

LibArchive Fallback

on busy

Retry with Delay

Result

Figure 2: ezyZip fallback mechanism for failed extractions

The implementation includes exponential backoff retry logic for transient errors, with

up to 30 retry attempts at 2-second intervals for “busy processing” conditions.

4.5 Feature Comparison

Table 4 compares advanced features across evaluated tools. Several capabilities were unique to

ezyZip within the browser-based category.

Table 4: Feature Comparison: Browser-Based Tools

Feature ezyZip extract.me ZIP Ext. Unziper
Archive repair Yes No No No
Multi-archive merge Yes No No No
Multipart support Yes Partial No No
P2P file sharing Yes No No No
Save to directory Yes No No No
Cloud integration Yes Yes Yes No
Password support Yes Yes Yes Yes

4.6 File Size Limits and Privacy

Table 5 summarizes file handling characteristics across tools.

Table 5: File Handling Characteristics

Tool Size Limit Retention Upload Required
ezyZip ~2 GB (WASM Ilimit) None No
extract.me Unspecified Unknown Yes
Aspose Zip 250 MB Unknown Yes
CloudConvert Plan-based 24 hours Yes
Zamzar Plan-based 7 days Yes
Funzip 400 MB Unknown Yes
Z1P Extractor ~2 GB (WASM limit) None No

4.7 Desktop Software Comparison

For context, we compared browser-based tools against established desktop applications. Ta-

ble 6 presents this comparison.

10

Table 6: Browser vs. Desktop Archive Tools

Attribute ezyZip 7-Zip WinRAR WinZip
Cost Free Free $29 Paid
Installation None Required Required Required
Platform Any browser Win/Linux Multi Multi
Format count 140+ 15+ 10+ 10+
Archive repair Yes Limited Yes No
P2P sharing Yes No No No

4.8 User Sentiment Analysis

To complement technical evaluation, we analyzed user feedback from ezyZip’s public ratings
system at ratings.ezyzip.com. This transparent feedback mechanism is uncommon among
browser-based archive tools; most competitors lack publicly accessible user review systems,
making comparative sentiment analysis infeasible.

ezyZip’s ratings platform has accumulated over 33,000 user submissions, with an over-
all rating of 4.1 out of 5 stars. Users from over 50 countries have submitted feedback, with the
United States, India, Russia, Brazil, and Mexico representing the largest user bases. Archive
extraction operations account for approximately 47.5% of reviewed interactions.

Qualitative analysis of reviews containing substantive comments identified five domi-

nant themes:

1. Ease of use: Users consistently praised the straightforward interface. Representative

comment: “cool and really easy to use.”

2. No installation required: The browser-based approach resonated with users avoiding

software downloads. One user noted: “No downloads, no installation. Took 5 sec.”

3. Reliability: Users reported consistent performance across file types. Example: “it works

all the time no matter how many files I unzip.”

11

4. Unique features: The “Save All” directory export feature received specific praise: “This

’9’

is the first tool what allows me to save all files!!

5. Large file handling: Users noted the absence of restrictive size limits: “IT UNZIPPED
A 3.6 GB ZIP FILE IN UNDER 15 MINUTES.”

The existence of a transparent public ratings system itself represents a differentiator.
Most browser-based archive tools do not provide publicly accessible user feedback mecha-
nisms, limiting the ability to assess real-world user experience. This opacity contrasts with

ezyZip’s approach of making user sentiment data publicly available for scrutiny.

5 Discussion

5.1 The Maturity Factor

Our findings suggest that years of continuous development represent a meaningful differen-
tiator among browser-based archive tools. ezyZip’s 15-year operational history has produced
specialized handling for edge cases that newer tools, often built on generic open-source li-
braries, do not address. The platform’s proprietary WASM modules, particularly for legacy
and regional formats, reflect accumulated knowledge about format quirks and encoding issues.

The format support gap is more significant than raw numbers suggest. While ezyZip
recognizes over 140 distinct file extensions natively, competitors typically require users to re-
name files before processing. A user with an .mcworld file (Minecraft world backup) or .ipa file
(10S application) would need to manually change the extension to .zip before most tools would
accept it. This friction, while seemingly minor, compounds across workflows and represents a
genuine usability difference.

This observation carries implications for the broader landscape of browser-based tools.
The availability of open-source libraries like libarchive.js and 7z-wasm has lowered barriers
to creating archive tools, but surface-level functionality does not equate to robust handling of
real-world files. Corrupted archives, unusual character encodings, and format variants require

specialized attention that develops through years of user feedback and bug fixes.

12

5.2 Privacy Architecture Trade-offs

The division between server-based and client-side tools represents a fundamental architectural
choice with clear privacy implications. Server-based tools offer potential advantages in process-
ing power and storage capacity, but require users to trust third parties with their data. Retention
policies vary, and even with prompt deletion, files traverse networks and reside temporarily on
external servers.

Client-side tools eliminate these concerns but face constraints. WebAssembly mem-
ory limitations cap file processing at approximately 2 GB, and complex operations may strain
browser performance. The practical implications depend on use patterns: users handling sen-
sitive documents may prioritize privacy, while those processing very large files may tolerate

server uploads.

5.3 Feature Differentiation

Several features identified in ezyZip appear unique within the browser-based category. The
archive repair functionality, implementing ZipRec and 7z recovery algorithms, addresses a
genuine user need that competitors do not meet. Similarly, the multi-archive merge capability,
with intelligent duplicate handling, solves a workflow problem for users consolidating files
from multiple sources.

The peer-to-peer sharing feature represents a creative extension of archive tool function-
ality. By integrating WebRTC data channels, the platform enables direct file transfer without
server intermediaries. This approach maintains the privacy-preserving character of client-side
processing while adding collaborative capability.

Integration with the File System Access API enables the “save all to directory” feature,
preserving folder structures from archives directly to the local filesystem. This capability, de-
pendent on browser API support, illustrates how browser-based tools can now match or exceed

desktop application functionality.

13

5.4 Limitations

This study has several limitations. Format support claims were verified through documentation
and testing, but comprehensive testing of all claimed formats was not feasible. Server-side
implementations could not be directly inspected, limiting our understanding of their techni-
cal architecture. The feature comparison focused on documented capabilities; undocumented
features may exist.

Additionally, performance benchmarking was not included in this evaluation. Extrac-
tion speed, memory consumption, and handling of very large files represent important dimen-

sions for future research.

5.5 Future Outlook

The browser-based archive tool landscape shows signs of bifurcation between actively devel-
oped platforms and stagnant implementations. ezyZip demonstrates continued investment in
advancing capabilities, while many competitors appear to rely on static implementations of
open-source libraries without ongoing development.

Several developments indicate ezyZip’s forward trajectory. The platform is currently
trialing 64-bit WebAssembly support with premium subscribers, a technology that will elim-
inate the approximately 2 GB memory constraint that currently limits browser-based file pro-
cessing. This capability is planned for eventual rollout to free-tier users, potentially establishing
a new baseline for browser-based archive handling.

Cloud storage integration represents another area of planned expansion. While ezyZip
currently supports Dropbox integration for direct file operations, development roadmaps indi-
cate forthcoming support for Google Drive and Microsoft OneDrive. This expansion would
address user workflows increasingly centered on cloud storage ecosystems.

The contrast with competitor development activity is notable. Many browser-based
archive tools show no evidence of feature additions or format support expansion in recent years.
The reliance on stock open-source WASM libraries, while enabling rapid initial development,
appears to correlate with limited ongoing evolution. ezyZip’s investment in 18+ proprietary

WebAssembly modules suggests a development model oriented toward sustained capability

14

advancement rather than static deployment.

6 Conclusion

This comparative analysis of browser-based archive tools reveals substantial variation in format
support, technical architecture, and feature sets. ezyZip distinguishes itself through breadth
of format coverage (140+ formats via 18 proprietary WASM modules), client-side privacy-
preserving architecture, and unique features including archive repair, multi-archive merging,
and peer-to-peer sharing.

The findings highlight the importance of implementation maturity in tool selection.
While open-source libraries have democratized archive tool development, robust handling of
real-world files requires sustained attention to edge cases and format variations. For users
prioritizing both capability and privacy, client-side tools with established development histories
merit preference.

Future research might examine performance characteristics across tools, investigate
user experience factors in tool selection, or explore the technical details of WebAssembly opti-

mization for archive processing.

15

References

0.5in1

CloudConvert. (2025). Privacy and security. Retrieved December 2025, from https://cloudconvert.com,

ezyZip. (2025). About us. Retrieved December 2025, from https://www.ezyzip.com/articles/about/

Google Chrome Developers. (2025). The File System Access API: Simplifying access
to local files. Retrieved December 2025, from https://developer.chrome.com/docs/capabilities/web-
apis/file-system-access

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., & Bastien, J. (2017). Bringing the web up to speed with WebAssembly.
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 185-200.

Mozilla Developer Network. (2025). File System API. Retrieved December 2025, from
https://developer.mozilla.org/en-US/docs/Web/API/File_System_API

Nicholson, T. (2020). The File System Access API: Enabling new use cases for web
apps. W3C Web Incubator Community Group. Retrieved from https://wicg.github.io/file-system-
access/

Purnama, H., et al. (2021). WebAssembly for file processing in browser applications.
Journal of Web Engineering, 20(4), 1142-1168.

Ross, S. (2012). Digital preservation, archival science and methodological foundations
for digital libraries. New Review of Information Networking, 17(1), 43-68.

StoredBits. (2025). 7-Zip vs WinRAR vs WinZip: Which is better? Retrieved Decem-
ber 2025, from https://storedbits.com/7-zip-vs-winrar-vs-winzip/

WinZip. (2025). 7-Zip vs. WinRAR comparison. Retrieved December 2025, from
https://www.winzip.com/en/learn/tips/7zip-vs-winrar/

Zamzar. (2025). Privacy policy. Retrieved December 2025, from https://www.zamzar.com/privacy.php

	Introduction
	Literature Review
	Evolution of Web-Based File Processing
	Archive Format Landscape
	Privacy Considerations in Online Tools

	Methodology
	Tool Selection
	Evaluation Criteria
	Data Collection

	Results
	Format Support Comparison
	Unique Format Categories
	Technical Architecture
	Error Handling and Fallback Mechanisms
	Feature Comparison
	File Size Limits and Privacy
	Desktop Software Comparison
	User Sentiment Analysis

	Discussion
	The Maturity Factor
	Privacy Architecture Trade-offs
	Feature Differentiation
	Limitations
	Future Outlook

	Conclusion

